Effects of spatial smoothing on inter-subject correlation based analysis of FMRI.

نویسندگان

  • Juha Pajula
  • Jussi Tohka
چکیده

This study evaluates the effects of spatial smoothing on inter-subject correlation (ISC) analysis for FMRI data using the traditional model based analysis as a reference. So far within ISC analysis the effects of smoothing have not been studied systematically and linear Gaussian filters with varying kernel widths have been used without better knowledge about the effects of filtering. Instead, with the traditional general linear model (GLM) based analysis, the effects of smoothing have been studied extensively. In this study, ISC and GLM analyses were computed with two experimental and one simulated block-design datasets. The test statistics and the detected activation areas were compared numerically with correlation and Dice similarity measures, respectively. The study verified that (1) the choice of the filter substantially affected the activations detected by ISC analysis, (2) the detected activations according to ISC and GLM methods were highly similar regardless of the smoothing kernel and (3) the effect of spatial smoothing was mildly smaller on ISC than GLM analysis. Our results indicated that a good selection of the full width at half maximum of the Gaussian smoothing kernel for ISC was slightly larger than double the original voxel size.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effect of Spatial Smoothing on Task fMRI ICA and Functional Connectivity

Spatial smoothing is a widely used preprocessing step in functional magnetic resonance imaging (fMRI) data analysis. In this work, we report on the spatial smoothing effect on task-evoked fMRI brain functional mapping and functional connectivity. Initially, we decomposed the task fMRI data into a collection of components or networks by independent component analysis (ICA). The designed task par...

متن کامل

fMRI alignment based on local functional connectivity patterns

In functional neuroimaging studies, the inter-subject alignment of functional magnetic resonance imaging (fMRI) data is a necessary precursor to improve functional consistency across subjects. Traditional structural MRI based registration methods cannot achieve accurate inter-subject functional consistency in that functional units are not necessarily consistently located relative to anatomical ...

متن کامل

Groupwise spatial normalization of fMRI data based on multi-range functional connectivity patterns

Spatial alignment of functional magnetic resonance images (fMRI) of different subjects is a necessary precursor to improve functional consistency across subjects for group analysis in fMRI studies. Traditional structural MRI (sMRI) based registration methods cannot achieve accurate inter-subject functional consistency in that functional units are not necessarily located relative to anatomical s...

متن کامل

Brain Activity Map Extraction of Neuromyelitis Optica Patients Using Resting-State fMRI Data Based on Amplitude of Low Frequency Fluctuations and Regional Homogeneity Analysis

Introduction: Neuromyelitis Optica (NMO) is a rare inflammatory disease of the central nervous system which generally affecting the spinal cord and optic nerve. Damage to the optic nerve can result in the patient's dim vision or even blindness, while the spinal cord damage may lead to sensory and motor paralysis and the weakness of the lower limbs in the patient. Magnetic Reson...

متن کامل

Improving the Performance of ICA Algorithm for fMRI Simulated Data Analysis Using Temporal and Spatial Filters in the Preprocessing Phase

Introduction: The accuracy of analyzing Functional MRI (fMRI) data is usually decreases in the presence of noise and artifact sources. A common solution in for analyzing fMRI data having high noise is to use suitable preprocessing methods with the aim of data denoising. Some effects of preprocessing methods on the parametric methods such as general linear model (GLM) have previously been evalua...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Magnetic resonance imaging

دوره 32 9  شماره 

صفحات  -

تاریخ انتشار 2014